Sensor Fusion Using Fuzzy Logic Enhanced Kalman Filter for Autonomous Vehicle Guidance in Citrus Groves

نویسندگان

  • V. Subramanian
  • T. F. Burks
  • W. E. Dixon
چکیده

This article discusses the development of a sensor fusion system for guiding an autonomous vehicle through citrus grove alleyways. The sensor system for path finding consists of machine vision and laser radar. An inertial measurement unit (IMU) is used for detecting the tilt of the vehicle, and a speed sensor is used to find the travel speed. A fuzzy logic enhanced Kalman filter was developed to fuse the information from machine vision, laser radar, IMU, and speed sensor. The fused information is used to guide a vehicle. The algorithm was simulated and then implemented on a tractor guidance system. The guidance system's ability to navigate the vehicle at the middle of the path was first tested in a test path. Average errors of 1.9 cm at 3.1 m s-1 and 1.5 cm at 1.8 m s-1 were observed in the tests. A comparison was made between guiding the vehicle using the sensors independently and using fusion. Guidance based on sensor fusion was found to be more accurate than guidance using independent sensors. The guidance system was then tested in citrus grove alleyways, and average errors of 7.6 cm at 3.1 m s-1 and 9.1 cm at 1.8 m s-1 were observed. Visually, the navigation in the citrus grove alleyway was as good

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low cost automation using INS/GPS data fusion for accurate positioning

Low cost automation often requires accurate positioning. This happens whenever a vehicle or robotic manipulator is used to move materials, parts or minerals on the factory floor or outdoors. In last few years, such vehicles and devices are mostly autonomous. This paper presents the method of sensor fusion based on the Adaptive Fuzzy Kalman Filtering. This method has been applied to fuse positio...

متن کامل

Sensor Fusion Based on Fuzzy Kalman Filtering for Autonomous Robot Vehicle

This paper presents the m e w of sensor fusion based on the Adaptive Fuzzy Kalman Filtering. This method has been applied to fuse position signals from the Global Positioning System (GPS) and Inertial Navigation System (INS) for the autonomous mobile vehicles. The presented method has been validated in 3-0 environment and is of particular importance for guidance, navigation, and control of flyi...

متن کامل

Sensor Data Fusion Using Kalman Filter

Autonomous Robots and Vehicles need accurate positioning and localization for their guidance, navigation and control. Often, two or more different sensors are used to obtain reliable data useful for control system. This paper presents the data fusion system for mobile robot navigation. Odometry and sonar signals are fused using Extended Kalman Filter (EKF) and Adaptive Fuzzy Logic System (AFLS)...

متن کامل

Fuzzy Adaptive Kalman Filtering for INS/GPS Data Fusion

This paper is an attempt to generalize the results obtained earlier and presents the method of sensor fusion based on the Adaptive Fuzzy Kalman Filtering. This method has been applied to fuse position signals from the Global Positioning System (GPS) and Inertial Navigation System (INS) for the autonomous mobile vehicles. The presented method has been validated in 3-D environment and is of parti...

متن کامل

An interval Kalman filter–based fuzzy multi-sensor fusion approach for fault-tolerant heading estimation of an autonomous surface vehicle

This article presents a novel fuzzy–logic based multi-sensor data fusion algorithm for combining heading estimates from three separate weighted interval Kalman filters to construct a robust, fault-tolerant heading estimator for the navigation of the Springer autonomous surface vehicle. A single, low-cost gyroscopic unit and three independent compasses are used to acquire data onboard the vehicl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009